ヒト皮膚線維芽細胞における脂肪酸、コレステロール代謝調節機構

東京大学大学院 農学生命科学研究科·応用生命化学

佐藤隆一郎

In an attempt to identify unknown target genes for SREBP-1, total RNA from a stable CHO cell line (CHO-487) expressing a mature form of human SREBP-1a (amino acids 1 to 487) with a LacSwitch Inducible Mammalian Expression System was subjected to a PCR subtraction method. One of the fragments was found to have 90 and 86% homology with rat and human ATP citrate-lyase (ACL) cDNA, respectively. When Hep G2 cells are cultured under either sterol-loaded or -depleted conditions, expression of the gene is induced approximately 2 to 3-fold by sterol depletion. To investigate the direct effect of SREBP-1a on transcription, luciferase assays using the promoter of the human ACL gene were performed. These deletion studies indicated that a minimum 160-base pair segment contains the information required for the transcriptional regulation brought about by enforced expression of SREBP-1a. Luciferase assays using mutant reporter genes revealed that SREBPdependent transcriptional regulation is mediated by two nearby motifs, the SREBP-binding site (a TCAGGCTAG sequence) and the NF-Y-binding site (a CCAAT box). It was confirmed by gel mobility shift assays that recombint SREBP-1a binds to the sequence. Data from studies with transgenic mice and reporter assays show that the ACL gene promoter is activated by SREBP-1a more strongly than SREBP-2 in contrast to the HMG CoA synthase and LDL receptor gene promoters, which exhibit the same preference for the two factors . Therefore, SREBPs transcriptionally regulates ACL enzyme activity, which generates the cytosolic acetyl CoA required for both cholesterol and fatty acid synthesis.

1. 緒 言

皮膚表面は皮脂によりコーティングされた表皮角質層、 その下層に表皮細胞由来の脂質が多層構造をなし、水分 バリヤー機能を担っている。この恒常性が破壊されたと き、種々の皮膚疾患が発症することを考えると、皮膚組織 での脂質代謝調節維持が疾患予防、治癒にとり重要である ことがうかがわれる。本研究課題では、脂肪酸合成・コレ ステロール代謝調節の中心的役割を担う転写因子 SREBP (Sterol Regulatory Element Binding Protein)の機能を、 分子細胞生物学的アプローチにより明らかにすることによ り、皮膚細胞における脂質代謝調節解明の基礎研究になる ことを目的とした。

SREBPは互いに47%の相同性を持つSREBP-1と SREBP-2の2種類の蛋白質から成るファミリーを形成 するが、その機能的役割分担について不明な点が多い。 SREBP-1が主として脂肪酸代謝関連遺伝子、SREBP-2が コレステロール代謝関連遺伝子を転写制御するものと考え られているが明確な知見は少ない^{1~3)}。我々は、それぞれ を一過的に発現する細胞株を樹立し、SREBP-1、-2のそ れぞれに応答する遺伝子を subtract PCR 法にて同定する ことを試みた⁴⁾。

Regulation of fatty acid and cholesterol metabolism in human fibroblast cells

Ryuichiro Sato

Department of Applied Biological Chemistry,

Graduate School of Agricultural and Life Sciences, University of Tokyo

2. 実験

2.1 ヒト活性型 SREBP-1 を一過的に発現する CHO 細胞株の樹立

あらかじめLac Iを安定発現する CHO 細胞株を樹立し (CHO-Lac)、これにLac Iにより発現が抑制される発現 プラスミドにヒト活性型 SREBP-1 を組み込んだものを遺 伝子導入し、IPTG 含有培地で一過的に発現が認められる 細胞株 CHO-487 を獲得した。

2.2 subtract PCR 法による応答遺伝子の単離

CHO-Lac ならびに CHO-487 細胞をコレステロールを 過剰に含む培地に、1 mMIPTG を添加し、19 時間培養し、 総 RNA を回収した。定法に基づき、CHO-487 細胞で発 現が亢進している遺伝子のフラグメントを獲得した。その フラグメントを用いて、双方の細胞から回収した RNA を 用いて Northern hybridization を行い、確かに CHO-487 細胞で発現の亢進が認められたクローンについてそれらの 塩基配列を決定した。

2.3 Luciferase assay 法による応答領域の決定

応答遺伝子として新たに見出された ATP クエン酸リア ーゼ (ACL) について、ヒト遺伝子の転写開始点から上 流 300 bp から下流 29 bp を含む領域をクローニングし、ル シフェラーゼ遺伝子の上流に挿入した ACL-300 を構築し た。PCR 法により - 251 から + 29 を含む ACL-251、以下 同様にして種々の長さのプロモーター領域を含むレポータ ー遺伝子を構築した。レポーター遺伝子と活性型 SREBP -1 発現プラスミドを HEK 293 細胞に遺伝子導入し、2日 後にルシフェラーゼ活性を測定した。

3. 結果と考察

CHO-487 細胞で SREBP-1 を一過的に過剰発現させ転 写が亢進した遺伝子を subtract PCR 法により単離し、そ の塩基配列を決定した。その結果、これまで報告のある SREBP 応答遺伝子の他に ACL 遺伝子が見出された。エ ネルギー過剰状態でミトコンドリア内で生成されたアセチ ル CoAは、そのままの形では細胞質へと移行できず、ク エン酸へと変換後細胞質へ移行し、細胞質で ACL の働き により再びアセチル CoA へと変換される。このアセチル CoA は脂肪酸、コレステロール合成の基質となる。従っ て、脂肪酸、コレステロール合成経路を調節する SREBP がその初発酵素の転写を制御することは、十分にあり得 ることと言える。そこで新たな応答遺伝子として同定さ れた ACL、SREBP の制御を受ける HMG CoA synthase mRNA の変動をそれぞれの CHO 細胞株を用いて検討し た。CHO-Lac細胞、CHO-487細胞をコレステロールを 過剰に含む培地に IPTG を添加し、19時間培養し、総 RNA を回収し、アガロースゲルにて電気泳動し、それぞ れのプローブを用いて Northern Blot 解析を行った (Fig. 1)。いずれの細胞でも過剰のコレステロールのために内 因性の SREBP は不活性化状態であり、CHO-487 細胞で のみ IPTG により外因性のヒト活性型 SREBP-1 が発現さ れている。この状況下で、HMG CoA synthase mRNA は CHO-Lac 細胞では検出限界以下まで減少し、一方 CHO-487 細胞では外因性 SREBP-1 によりバンドが検出された。 ACL については HMG CoA synthase mRNA と同様な濃 淡のパターンは認められたものの、コレステロール過剰状 況下のCHO-Lac細胞でも発現が確認され、SREBP-1は 転写の一部を調節していることが推察された。

この様な ACL 遺伝子の転写制御が、SREBP-1 の過剰

A B ACL Fig.1 Northern blot analysis for the ACL and HMG CoA synthase gene in CHO-Lac and CHO-487 cells. CHO-Lac(A) and CHO-487(B) cells were cultured with 1 μ g/mL of 25-hydroxycholesterol, 10 µg/mL of cholesterol and 1 mM IPTG for 19 h. Twenty µg total RNA samples were fractionated on 1% agarose gel, transferred to nylon membrane, and hybridized with a DIGlabeled riboprobe for ACL, HMG CoA synthase or S17. The fold change in ACL mRNA, relative to that in CHO-Lac cells, was calculated after correction for loading differences with S17. Signals were quantified with a FluorImager 595. In three separate experiments the same relative mRNA levels were obtained.

発現により観察される人為的な現象なのか、細胞内コレ ステロールの増減に応じて起こる SREBP の活性化によっ ても引き起こされるのかについて、ヒト肝細胞 Hep G2 に よる解析を行った。Hep G2 細胞をコレステロール過剰培 地もしくはコレステロール合成阻害剤を含む培地で培養 し、RNA を回収し、Northern Blot 解析を行った(Fig. 2)。 ACL は細胞内のコレステロールの増加に伴い発現が低下 し、減少に伴い発現増加が認められた。以上の知見は、生 理的条件での細胞内コレステロール量の変動に伴う内因性 SREBP の活性化、不活性化に伴い、本遺伝子が転写調節 を受けうることを意味している。

続いてヒト ACL 遺伝子のプロモーター領域をクロー ニングし、ルシフェラーゼ遺伝子の上流に挿入したレポ ーター遺伝子を用いたルシフェラーゼアッセイを行い、 SREBP-1 による転写調節応答領域の同定を試みた。転写 開始点から 131 bp 上流までは SREBP-1 による調節を受け たが、94 bp まで短くするとその調節は失われた (Fig. 3)。

そこで、131から94bpの塩基配列中、SREBPの応答 配列の候補部位を3ヶ所、SREBP結合部位の近傍に存在 し協調的に働くNF-Yの結合部位1ヶ所にそれぞれ変異 を入れたレポーター遺伝子を構築し、ルシフェラーゼア ッセイを行った。その結果、上流110bp付近の配列に応 答するとともに(ACL-131SREbKO)、それに近接する CCAAT 配列も調節に必須であることが明らかになった (Fig. 4)。SREb 配列へのSREBPの結合はゲルシフトア ッセイにより確認した。

ACL は脂肪酸合成、コレステロール合成の出発物質で あるアセチル CoA 生成を触媒する酵素であり双方の経路 に重要であるが、インスリンへの応答等これまでの知見か らエネルギー過剰状況下で脂肪酸合成等を誘導するリポジ エニック酵素として認識されている。従って、コレステ ロール代謝関連遺伝子の転写調節に主に機能する SREBP -2 に比べて脂肪酸代謝関連遺伝子の転写調節に関与する SREBP-1 による支配を強く受ける可能性がある。そこで ルシフェラーゼアッセイの系にヒト SREBP-1、SREBP -2 発現プラスミッドをそれぞれ導入し、応答を検討した

Sterols + -

S17 ----

Fig. 2 ACL mRNA expression is regulated by cellar cholesterol levels. Hep G2 cells were cultured with medium containing 5% LPDS supplemented with either 1 μ g/mL of 25-hydroxycholesterol plus 10 μ g/mL of cholesterol (sterol-loaded conditions) or 50 μ M of a HMG CoA reductase inhibitor, pravastatin plus 50 μ M of sodium mevalonate (steroldepleted conditions) for 48 h. Northern blot analysis was carried out as described in the legend to Fig. 1.

Fig. 3 Regulation of ACL promoter-luciferase reporter genes by SREBP-1a(1-487). HEK 293 cells were transfected with one of human ACL promoter reporter genes (200 ng), a plasmid encoding b-galactosidase (100 ng), and an expression plasmid (10 ng), pSREBP1(1-487) for 4 h. The cells were incubated for 48 h and then lysed, and enzyme activities were determined. The ratio of luciferase activity in relative light units (RLU) is divided by the β-galactosidase activity (U, units) to give a normalized luciferase value (RLU/U). The values given are the average of data from more than three experiments performed in triplicate.

Fig. 4 Effect of the mutation of the SRE or the NF-Y binding site on the expression of reporter gene. HEK 293 cells were transfected and cultured as described in the legend to Fig. 3. The fold activation (luciferase activity with SREBP-1 versus without SREBP-1) is shown. The luciferase activities obtained by the reporter genes were in the range of 400 to 1000 RLU/U. The values given are the average of data from more than three experiments performed in triplicate.

(Fig. 5)。その結果、ACLはSREBP-1により高い感受 性を持って反応した。一方、コントロールで用いたHMG CoA synthase、LDL受容体遺伝子は双方に対してほぼ同 等の反応を示した。さらにSREBP-1、SREBP-2を過剰 発現するトランスジェニックマウス肝臓中でのそれぞれの mRNA 量を測定したところ、HMG CoA synthase、LDL 受容体 mRNA は両トランスジェニックマウス間で差が認 められなかったのに対し、ACL mRNA は SREBP-1 トラ ンスジェニックマウスで高値を示し、ルシフェラーゼアッ セイの結果と一致した。

Fig. 5 Differential sensitivity of the ACL, HMG CoA synthase and LDL receptor promoters to overexpressed SREBP-1 a or SREBP-2. HEK 293 cells were transfected with one of reporter genes (ACL-131, pHMG S and pLDLE; 200 ng), a plasmid encoding β-galactosidase (100 ng), and an indicated amount of expression plasmid, pSREBP1 a (1-487) or pSREBP2(1-481), for 4h. The cells were incubated for 48 h and then lysed, and enzyme activities were determined. The fold activation (luciferase activity in the presence of SREBP-1 a or SREBP-2 versus in the absence) is shown. The values given are the average of data from three experiments performed in triplicate.

4. 総 括

脂質代謝関連遺伝子の転写を調節するSREBPの新規応 答遺伝子としてACLを初めて同定し、その転写調節機構 を明らかにした。同様な調節機構は皮膚線維芽細胞でも存 在し、皮膚における脂質代謝のダイナミズムに深く関与し ている可能性がある。今後この様な基礎知見を積み重ねる ことにより、皮膚細胞での脂質代謝の恒常性維持を目指し たコスメトロジー研究の発展が期待される。

(引用文献)

1) 佐藤隆一郎: 膜結合型転写因子 SREBP 蛋白質核酸酵素, 45, 2612-2623, 2000.

- 2) Sato, R., Inoue, J., Kawabe, Y., 他3名: Steroldependent transcriptional regulation of sterol regulatory element-binding protein-2. J. Biol. Chem. 271, 26461-26464, 1996.
- 3) Sato, R., Miyamoto, W., Inoue, J., 他3名: Sterol regulatory element-binding protein negatively regulates microsomal triglyceride transfer protein gene transcription. J. Biol. Chem. 274, 24714-24720, 1999.
- 4) Sato, R., Okamoto, A., Inoue, J., 他5名: Transcriptional Regulation of the ATP Citrate-lyase Gene by Sterol Regulatory Element-binding Proteins. J.Biol.Chem. 275, 12497-12502, 2000.